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Abstract Modeling of ionic diffusion in warm dense plasma mixtures has been of
longstanding interest in astrophysics and in Inertial Confinement Fusion. Here we
review traditional approaches to calculating plasma diffusion using kinetic theory.
We also review earlier classical molecular dynamics (MD) results. We discuss some
new results from MD for self and mutual diffusion in a mixture of deuterium and
argon at warm dense matter regime. We make use of Yukawa interionic potentials
as an effective potential that accounts for the screening effects of the electrons to
the ions. We further provide a general description of the Green-Kubo technique to
extract the diffusivity of a multicomponent mixture. The description is very general
and it can be extended to plasmas.
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1 Introduction

Species diffusion is the process in which a net species flux arises in the center of
mass frame in response to gradients in the concentration, pressure, or temperature. [[L]
The species may be atoms or molecules or even larger particles, depending on the
system, but for the purpose of this article the species will be different kinds of ions.
Species diffusion is often in response to concentration gradients. The species cur-
rent lowers the free energy by increasing the entropy of mixing, so species diffusion
is necessarily a non-equilibrium process. Temperature gradients and pressure gra-
dients may also give rise to gradients in the chemical potential that drive diffusion.
These are special cases of species diffusion called thermodiffusion and barodiffu-
sion, and they can be important in plasmas [2, 3| 4]]. This article focuses primarily
on species diffusion driven by concentration gradients, and for simplicity we will
refer to it as diffusion.

Diffusion is an important component of mixing. Mixing is a combination of stir-
ring and diffusion, in which stirring is hydrodynamic flow that redistributes initially
separated species, and diffusion causes them to mix irreversibly at the atomic level.
At high Reynolds numbers vortices can develop and cause stirring on many length
scales, and diffusion operates on this complex flow pattern. At low Reynolds num-
bers, fluid flow is governed by the Stokes equation, so it is reversible. Two initially
separated components can be mixed by stirring, and then unmixed by stirring in
the reverse direction. Experiments that demonstrate this effect are quite striking [S]].
Only a very small amount of mixing persists due to the irreversible diffusion.

Within plasma physics there are well known examples where diffusion is under-
stood to play an important role or where it has been proposed to be important. It
is key to the purification of white dwarf atmospheres through the sedimentation of
heavy elements.[6] A similar phenomenon is thought to occur in neutron stars. Dif-
fusion can also have an effect in hot spot ignition for inertial confinement fusion
(ICF), since it is a mechanism for ablator materials to degrade the fuel.[7, 18] Also,
other systems exhibit diffusion of particles interacting through screened Coulomb
interactions, such as dust particles in plasmas and colloidal particles suspended in
electrolyte 9,110} 111} [12]. Diffusion in these systems spans a large range of regimes.
In ICF, the fuel starts cold and at solid density ~1 g/cm?, is rapidly compressed to
warm dense matter conditions, and ultimately while burning should be at tempera-
tures ~1 keV and densities of ~1000 g/cm?. [7] A white dwarf is at a temperature
of ~20to 1000 eV and a broad range of densities. The white dwarf is a weakly cou-
pled plasma, whereas the ICF fuel goes from strongly coupled to weakly coupled.
Understanding diffusion across this range of conditions is a challenge.

There are several classic pictures of diffusion. In a simplified picture from the
kinetic theory of gases, atoms move ballistically on the average of some length A,
the mean free path, before scattering. After scattering, they move ballistically in a
different direction. If there is no concentration gradient, there will be just as many
atoms coming from one direction as from the opposite direction, so there is no net
flux. If there is a concentration gradient, more atoms will come from the region with
higher concentration, so the flux will be proportional to the concentration gradient.
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If the pressure and temperature are uniform, the mass flux J is related to the gradient
in the mass fraction of one species, ¢(r), according to:[[13]

J =—pD2Vc(r) (1)

where p is the mass density. The coefficient of proportionality, D, is the mutual
diffusivity or interdiffusivity. In the simplified ideal gas picture, it is related to the
mean free path and mean thermal velocity, vy, by the relation:

1
Dy, = ngth' @)
Since mass is conserved, the mass flux obeys a continuity equation:

p(dic+v-Ve(r)=-V-]J 3)

Together eqs. (I)) and (3) give rise to the equation:

% =D V¢(r) “)
where we have taken v = 0. Equation @) is known as Fick’s first law of diffusion,
and eq. is known as Fick’s second law of diffusion. In the simplified kinetic
theory, both the mean free path A and the thermal velocity vy, are positive, so the
mutual diffusivity is positive. The mass flux acts to decrease the gradients, and the
diffusivity increases with increasing thermal velocity and mean free path.

Another familiar case is the diffusion of an interstitial atom in a crystal lattice.
The interstitial is an extra atom sitting in a site between the regularly arrayed atoms
of the crystal. Interstitials can diffuse, hopping from one interstitial site to another,
but there is an energy barrier that must be overcome to hop from site to site. The
energy to overcome the barrier is provided by thermal fluctuations. So the atom rat-
tles around in the energy well of one interstitial site until a sufficiently large thermal
fluctuation pushes it over the barrier. A similar phenomenon occurs in liquids in
which atoms are trapped in the cage of their neighbors for some period of time until
a thermal fluctuation allows them to escape the cage. Diffusion of the interstitial
atom in a crystal or a caged atom in a liquid is punctuated by hops, just as diffusion
in the ideal gas is punctuated by scattering events. After many hops, the distribu-
tion function describing the probability of finding the atom a distance r from its
starting point is a Gaussian in » whose width increases like the square-root of time,
characteristic of diffusion.

These two kinds of diffusive phenomena also occur in plasmas. Weakly coupled
plasmas exhibit diffusion like the ideal gas, while strongly coupled plasmas diffuse
like the liquid. In plasmas the scattering is due to the Coulomb repulsion between
like-charged ions, screened by the electrons. The scattering cross-section that deter-
mines the mean free path involves an integral that diverges logarithmically at both
short and long range for the pure Coulomb interaction. It is cutoff at long ranges by
the Debye length when screening is included, and at short distances by the classical
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turning point. The resulting kinetic theory making use of Chapman-Enskog theory
provides a good description of diffusion in weakly coupled plasmas. Chapman and
Cowling derived analytic expressions for diffusion in Coulomb systems,[14] and
Paquette extended this work to statically screened ions.[[15]]

In the strongly coupled regime, cage effects become important, invalidating the
binary collision model upon which the Chapman-Cowling and Paquette models are
based. In this regime, molecular dynamics (MD) has been used to capture the many-
body effects governing diffusion.[[16] There has been a recent finding that effective
pair potentials provided a means of extended the realm of validity of a diffusion
model based on binary collisions.[[17]] The MD simulations valid at strong coupling,
become more challenging when the coupling is weak.

We now give a brief review of the parameters of a mixed plasma. We assume a
mixture of the ion species & = 1,2, ... with mass and charge Ay and Z,, respectively.
The total number density of ions is given by n = Y, ny, where ny is the number
density of the ions of species ¢. The Wigner-Seitz radius of the system is given by:
aws = (%nn)’l/ 3, From the charge neutrality of the mixture the number density of
the electrons is:

ne = (Z)n, 5)

where (Z) is the average ionization of the mixture. We follow the general definition
for the angular brackets (---) denoting a number weighted average of a parameter
E in a mixture of the type () =Y o EqXq Where Xy = ng/n is the mole fraction of
species o. The state of the free electrons is determined by the electron number den-
sity n, and temperature 7. It is convenient to introduce the dimensionless density
parameter ry = d,/ag, where a, = (%ﬂ:ne)_l/ 3 and ag is the Bohr radius. The degen-
eracy of the electrons in the system is determined by the parameter ® = kgT /EF,

2 2/3 . .
where Ep = % (377:2}16) / is the Fermi energy and m, the mass of the electron.
The strength of the ion-ion Coulomb interaction in species i is characterized by
the coupling parameter:

_ @ _ s

= — Z 1/31—* 6
dnegaikgT ! < > ’ ©)

13
where a; = (27!/3““’5 is the ion sphere radius introduced by Salpeter [[18], and I" =
e*/ (4megawskpT) is the electron-electron coupling parameter. In a multicompo-

nent mixed plasma it is useful to introduce an effective coupling [19, 120,21} 22} 23]):

Ly =Y. Xli=(ZP)2)'°r. )

An important length scale is also the de Broglie wavelength A; = (27‘ch2 / mikBT) 1/2,
where m; is the mass of ion of species i.

In the high density and degenerate plasma limit, i.e. 7, — 0 and ® — 0 respec-
tively, the electrons form a rigid neutralizing background. However, for most of the
conditions the electron background is both polarizable and compressible. In charged
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fluids the electrons interact not only with their immediate neighbors but with all the
other electrons in the system, therefore their motion cannot be decoupled from one
another. As a consequence plasmas exhibit a strong collective behavior in the long
wavelength limit, kK — 0, where the Fourier transform of the Coulomb potential,
e?/gok, diverges. A manifestation of this behavior is the rearrangement of the elec-
trons around the ions so that the plasma remains locally neutralized. This leads to
an effective ion potential which decays much faster than 1/r at large distances. In
this work we use the Yukawa potential to describe the ionic effective potential.

To get an insight into the diffusion of dense plasmas we will study a binary ionic
mixture immersed in a polarizable background of electrons that adiabatically cloud
around the ions. Conceptually, although cumbersome, we can extend the treatment
of a binary mixture to a multicomponent mixture. We touch on this topic for the
interested reader in the appendix [6] We denote the mass fraction of component o
by cq = pa/p, wWhere p and pg are the mass density of the total mixture and this
component, respectively.
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2 General overview of diffusivity in mixtures

Species diffusivity as a response to the concentration gradient is the main contributor
to how fluid evolves with time. Other contribution come from pressure and thermal
gradients in a way that respects conservation of mass, energy momentum and even
number of particles if chemical reactions are ignored. The conservation laws and
dissipative fluxes are described by the Navier-Stokes equations for multicomponent
fluids. The complete set of these equations is complicated and given in standard
texts [13]. Here we consider the binary mixture case and write only equations that
are relevant to the diffusion. The conservation equations for mass and momentum
and the equation for the species flux are:

Dp
“F = _pv.
D1 pv-v, 3)
Dc
V.
P, J+r, ©)
Dv
= _Vp-V.
P p T+pg, 10)
J=—pDis [Vc+(kT/T)VT+(kp/p)Vp], (11)

where D f /Dt is the comoving derivative (e.g., Dp /Dt = J;p +v- Vp). In these
sets of equations v(r) is the velocity field, p(r) is density and ¢(r) is the mass frac-
tion. The equations are written for a binary mixture so the indices in the previous
definition have been dropped. Also g is the gravitational acceleration, Dy, is the
interdiffusivity, k7 D15 is the thermal diffusion coefficient and kpD1; is the barodif-
fusion coefficient.

Here 7;; is the energy-momentum tensor related to the stress tensor 0;; by 7;; =
pvivj — 0;;. The rate of production of mass of one species due to chemical reaction,
which will be ignored in this study, is denoted by r. The other fields are the internal
energy per unit mass E, pressure p = —%0',-,', and temperature 7.

In this work we are interested in Fick’s law, which is implied by Egs. (9) and
(TT). We consider cases with no temperature, density and pressure gradient. Below
we describe the self-diffusion and its relation to the Fickian diffusion.

2.1 Self-Diffusivity

The self-diffusion coefficient Dy (x = 1,2) is related to the random-walk motion
of a tagged particle of species o in a mixture on hydrodynamic scales. It can be
calculated from the velocity autocorrelation function [24} 25} 26} 27, |1}, 128]]:
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1 e

Y () vi® (o)), (12)

j=1

via a Green-Kubo integral,
Dy :/ Cq()ds. (13)
0

In Eq. , v&a) (1) is the velocity of particle j of species ¢ at time ¢. The autocorre-
lation function C,, depends on the species as well as temperature, pressure, density
and composition. The autocorrelation starts at Cy(0) = kT /mg and decreases to-
ward O with time. For moderate to strong coupling mixtures the autocorrelation
function exhibits an oscillatory decay with time due to the appearance of negative
correlation effects. This is a manifestation of the cage effect [29]; where the tagged
particle finds itself momentary trapped by its immediate neighbors. At low enough
coupling the autocorrelation function decays monotonically; an indication of the
absence of the aforementioned many-body effects.

It is straightforward to verify the equivalence of Eq. (I13) with the equation relat-
ing the mean-squared displacement of a tagged diffusing particle time, in the long
time limit. This is given by the well known relation due to Einstein for Brownian
motion [30]]:

_ 1 1 2
Do = lim —(|r(r) —x(0)"). (14)

We can rewrite the Einstein relation (T4) in terms of velocity autocorrelation as
follows [24) 25]]:

() — £(0)[2) = < /0 l anv)- /0 t dt”v(t”)> —> /0 "t /0 " V() (15)

Equation (T3] can be combined with the definition (I2) to give:

(r(t) - r(O)) = 6/(:61//; A"l —1"). (16)

By changing variables from ¢’ and t” to ¢’ and T =¢' —¢” and after integration by
parts, we find that:

(r() — r(0)2) :6:/0' (17;)C(r)dr. a7

Substitution of Eq. into verifies (T3). This equivalence is a direct
consequence of Fick’s law of diffusion and constitutes a simple example of the
general fluctuation — dissipation relation, also known as Green-Kubo relations
[314 1321 133] 34]. It also relates the stochastic process of a random walk in which
the mean square displacement of the walker becomes a linear function of time after
a sufficiently larger number of collisions and displacements have occurred.
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2.2 Interdiffusion

Interdiffusion is related to the collective transport of mass driven by concentration
gradients [24]]. The rate at which concentration fluctuations dissipate is governed
by the interdiffusion coefficient D> which linearly relates mass fluxes to gradients
in the chemical potential. The latter, in isobaric-isothermal conditions, is linearly
proportional to the gradient of mass concentration. This can be easily seen from
equation (TI)) by keeping only the first term inside the bracket in the RHS. If we
define the center of mass velocity field by:

2
V(I‘,l‘) = Z CaVa(l‘,t), (18)
a=1

where v, is the velocity field of species o, then the mass flux of this species is :
Ja(r,t) = po(r,t) [va(r,t) —v(r,t)], (19)
and we define the interdiffusion coefficient by the Fick’s law:
Ja(r,t) = —p(r,t)D;a Ve (r,1). (20)

Using molecular dynamics we can study and estimate the interdiffusion by creat-
ing a system, like the one in Fig (I, with an initial sharp interface that creates a very
steep composition gradient. From the Fick’s law a current will be created that op-
poses this gradient and with time broadens the interface, and therefore intermixing
the different components. This process is very clear in Fig. [T| where we have simu-
lated the mixing process between two plasma of argon (in gold color on right) and
deuterium (in silver color on left). In principle, one can estimate the interdiffusiv-
ity D12 by analyzing the evolution of the composition profile ¢ (r,#) which should
satisfy the Fick’s equation at longtime limit. At the very initial stage when strong
gradients are present non-Fickian effects, like diffusion from ballistic motion, occur.

The interdiffusion coefficient like the self-diffusion can be expressed in terms of
fluctuations in the system in equilibrium, without any external forces to drive mass
or energy flux ([24} 25} 35} [1]), by use of Green-Kubo techniques [31]]. In the fol-
lowing we briefly derive the appropriate Green-Kubo formalism by connecting with
Fick’s law in the low-frequency and long-wavelength fluctuations that correspond
to the regime governed by linear hydrodynamics. A more detailed derivation can be
found in classical books of Statistical Mechanics [24,25]]. We also provide a general
derivation of this technique for a more generic case of multicomponent mixtures in
appendix [l We consider only mass concentration fluctuations and ignore fluctua-
tions in temperature and pressure. Using the previous notation and the overall mass
conservation law, one component should satisfy:

p(r,t) <aclg(:’t) +v(r,t)-Vey (r,t)) =—V-Ji(r,1). (21)
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Fig. 1: A non-equilibrium molecular dynamics simulation for binary mixtures of deuterium and
argon. In this plot chronologically ordered snapshots of interface broadening between two plasma
Ar and D as they mix are shown.

Linearizing the above equation with respect to virtual mass fluctuation of species 1,
dc(r,t) we arrive at the Fick’s diffusion equation for this fluctuation:

%5C1 (l‘7t) =D12V25C1 (l‘,l‘). 22)

It is very instructive to relate the fluctuations in local mass concentration to the
fluctuations in local number densities by the following ( cf. Ref. [24], Ch.3):

mpmy

Sc(r,t) = 2 [726n(r,t) — n1dny(r,1)] (23)

The real space solution of Eq. (22) in terms of Fourier components is:
Sci(k,t) = 8ci(k,0)exp(—Dik’t). (24)

Ensemble averaging of the correlation of the above fluctuations followed by a
Laplace transform in time, results in the following relation :

(8ci1(—k,)dcy (k,t =0)) = /Om e (Scy(—k,t)Scy(k,t =0))dt (25)

i(JJ—I—D]zk2

={| 8c1(k,t =0) |>) —F—.
<| cl(7 )|>(D2+D%2k4

By taking the appropriate hydrodynamic limit (i.e., long wavelength and low fre-
quency limit) and after use of mass conservation and integration by parts [36] we
get the following Green-Kubo form for interdiffusion coefficient:

1 e .c .
D122W /0 dt (§(1) - J°(0)). (26)
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In the above S, is the concentration structure factor defined in terms of partial
N; N

structure factors S;;(k) = & Z Z (expik- (rq —rg), with i, j the species indices,

a=18=1
by the following relation due to Bhatia & Thornton [37]:

See(k) = X3811 (k) + X282 (k) — 2X1 X812 (k) 27)

The expression (26) for interdiffusivity can simply be written as a product of a
thermodynamic factor @ with a Green-Kubo integrand DY,:

Dy, = @D}, (28)

Below we briefly discuss about each of these factors.

2.2.1 Thermodynamic Factor

The thermodynamic factor in Eq. is defined by @ = X1 X5/S..(0). In the long
wavelength limit all the structure factors can be derived by either thermodynamic
fluctuation theory or by calculation in a grand canonical ensemble [38]]. The con-
centration structure factor in isobaric-isothermal conditions is given by:

9*(BG/N)
Se(0) =1/ () . (29)
X} PT
Therefore we can express the thermodynamic factor as:
9*(BG/N
®— X%, {(/32/)} , (30)
9X; PT

where G is the Gibbs free energy, B = kgT and N is the total number of particles in
the system.

In most of the cases for nearly ideal neutral mixtures the thermodynamic factor
is very close to unity; however, this may not be true when considering charged plas-
mas. For weakly coupled plasmas due to the ambipolar electric field of the electrons
this factor goes to (Z2)/(Z)?, which can be very large at low concentration of an
asymmetric mixture [20} 135,139, 40]. As an example of this effect in Fig. [Z] we show
the variation of this factor as a function of the mole fraction of the heaviest parti-
cle in a binary mixture for four cases of charge ratio of the components, namely,
7Z»/Z; =4,8,13,18. Note that the asymmetry of the mixture is characterized by this
ratio. As it is clear in low mole fraction the higher the asymmetry the further from
unity is the thermodynamic factor.

Interestingly, significant deviations of the thermodynamic factor @ from unity
has been recently observed numerically for non-plasma mixture of Al-Ni melts [27]].
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I l I l I l I l I
Z,/Z, =18

<ZZ>/<Z>2

0 0.1 0.2 03 04 0.5
Argon Molar fraction

Fig. 2: The thermodynamic factor (Z2)/(Z)? as a function of mole fraction for four different
ratios of component charge Z,/Z; = 4,8,13,18.

2.2.2 Green-Kubo: Maxwell-Stefan Diffusivity

The Green-Kubo integrand Eq. (28) is given by:

I
DY, = m/o dr (j°(t)-j°(0)), (31

where the term inside the integral is a correlation of interdiffusivity currents:
Ny N
jL(I)ZXQZV,'—XlZVjZNX]Xz(Vl—Vz) (32)
i=1 j=1

The above Green-Kubo integrand D(])2 is also known in literature as Maxwell-Stefan
diffusivity [41].

2.3 Relating Self-diffusion with Interdiffusion

The velocity correlation functions in the interdiffusion are collective: only one de-
gree of freedom, the difference between the center of mass velocities for the two
species, contributes to the autocorrelation function whereas the self-diffusivity is
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related to the velocity autocorrelation function of the individual particles. Instead
of one degree of freedom, the average is over N; degrees of freedom. The statis-
tics are much better for calculating self-diffusivity. This difference explains why in
molecular dynamics simulations it is difficult to achieve the same numerical pre-
cision when estimating Maxwell-Stefan diffusivity as compared to self-diffusion
coefficient [[1, 142} 143} i44]]. Therefore, it is extremely helpful to identify practical
relations between Maxwell-Stefan and self-diffusion through different simplifying
assumptions.

If we group separately the velocity autocorrelation and cross-correlation func-
tions that appear in Maxwell-Stefan diffusion coefficient and use the .%-
notation of McCall and Douglass [45} 28 146], we have the following:

Fn | Fn F1a
DY) = XD+ XiDr+ X1 X | 5 + 252 -2 33
12 21+12+12(X]2+X22 X% )| (33)
where the .# -factors are given by:
| Na Ng oo
ﬂaﬁ:ﬁzz (vi(t) - v;)dt. (34)
i=1j£i70

If we assume that velocity cross-correlation functions are negligible, i.e.,

g F F
U, 72 4571 —0, (35)
X2 X3 XX

a simple linear rule that connects Maxwell-Stefan with self-diffusion coefficient in

a binary system follows:
DY, = X>D + X, Ds. (36)

The above relation is known in the Condensed Matter Community as Darken’s equa-
tion [47, 48 146} 49]. Similar relation has tacitly been assumed also in the plasma
community [42] 3522 23]].

A similarity exists between Eq. (36) and the so-called Nernst-Einstein relation,
which is an empirical relation that links the electrical conductivity of an ionic system
to the self-diffusion coefficients of the cations and anions in the system [50]. In this
case the electrical conductivity is related to the same velocity correlation functions
as the one that expresses the interdiffusion coefficient.
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3 Diffusion models in plasmas from Kinetic Theories

Plasmas, whether in astrophysics or in the Inertial Confinement Fusion experiments,
span a huge range of the Coulomb coupling parameter I (6). In the weakly coupled
regime Chapman-Spitzer theories ([51,[14]]) have been very successful in describing
diffusion coefficient.

In the limit of dilute-gas approximation transport coefficients, including diffusiv-
ity, are estimated by considering the Boltzmann equation of kinetic theory. Here the
collisions are important in determining the distribution function of the particles. In
weakly coupled plasmas ion-ion collisions consist of a series of many small angle bi-
nary scattering events. Within these assumptions the Chapman-Enskog theory [14]
assumes that the total distribution function of a given species can be expanded as a
convergent series of functions with the lowest order corresponding to the equilib-
rium distribution. Transport coefficients are then calculated from velocity moments
of the velocity distribution function. The latter is further expanded in terms of So-
nine polynomials (Associated Laguerre Polynomials). Having only the first term
in this expansion will correspond to a Maxwell velocity distribution. In this first
polynomial approximation following Chapman and Cowling [[14], the interdiffusion

coefficient is given by:
3kpT

[Dia]y = ————7 37)
16nm,q€2 5
where T and n are temperature and ion density, respectively, and
mimy
Myeg = ———— (38)
my +my

is the reduced mass of particles each with mass m; and m,. Here le) is the first

collision integral —defined in appendix [6}- which depends on the exact nature of
the interaction of colliding particles. For a pure Coulomb interaction between two
particles with charge Z; and Z, this integral can be derived analytically [14] as:

1 72726 16 (kgT)* A2
ol = I8¢ 1+47r60(2372)4D D)
4rmey \ 32 red (kgT) / ZiZse

The Debye length Ap is given by:

kT &kgT
Ap = = 40
P \/e2 Y X,.Z? \/e2 (z2) @0

where at the last term we have used the molar weighted average convention for the
77, with X; being the mole fraction of species i.

Accounting for a second-order polynomial approximation resulting from devia-
tions from Maxwell distributions provides:
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[D12],
1—A°

(D12, = (41)

where A is a function of the collision integrals Ql(él),.Ql(éz) ,.(2](;3),.(21(32) and the
mole fraction of the mixture. Details of its expression can be found at [[15]]. Inclusion
of terms beyond second polynomial introduce very small correction to the value of
diffusivity.

The use of an effective screened Coulomb interaction gives, in principle, a bet-
ter description of the diffusion in plasmas as it accounts for the collective effects
that surround a given charge. The collision integrals for this potential have been
numerically calculated and tabulated by Paquette et al. [15]. Using these tabulated
collision integrals and a second polynomial expansion we plot in Fig. [3the diffusiv-
ity values for a binary deuterium-argon mixture as a function of the mole fraction,
for three different T = 100,500 and 1000 eV and, ion density n = 10>/ cm?3. In all
these calculations the ionization of deuterium and argon was kept at values 1 and
13, respectively.

=)
—_

IIIIIII

T=100eV

Interdiffusivity (cmz/s)

o

S

—
T

IIIIIII

| | | | | | | | |
0 0.1 02 03 04
Argon Molar Fraction

o
n

Fig. 3: Interdiffusivity results for a deuterium-argon mixture at three different temperatures with
ion density n = 10%° / cm?. The values were calculated by using the 2nd polynomial approximation
and the tabulated collision integrals for screened Coulomb interaction [[15]. In all these calculations
the ionization of deuterium and argon was kept at values 1 and 13, respectively.
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4 Methods

An extremely powerful, albeit simple, tool to calculate diffusion coefficients is
molecular dynamics (MD) simulation. MD does not make weak coupling or binary
collision approximations, so it allows the study of diffusion with strong coupling.
MD simulations follow the motion of atoms (ions) by integrating their equations of
motion while accounting for the pairwise particle-particle interactions [52,|53]]. The
ions move according to the Newton’s Second Law:

N
mr, = Z F,’ﬁj (l) (42)
iZi

This set of 3N coupled ordinary differential equations are integrated explicitly in
time using the leap-frog scheme or velocity Verlet [52] algorithm, with a time step
that is related to the characteristic time scale of the system. Here N is the total
number of particles in the system. In Eq. @), F; ; is the force originating from the
interaction of “test” particle i with particle j. We study an unconfined system of
particles which entails use of periodic boundary conditions (PBC).

We use this general tool to study our plasma system as a mixture of deuterium
(D) and argon (Ar). At a temperature 7 = 100 eV we assume that D is fully ionized
while Ar partially ionized. The ionization of Ar has been input as a free parameter
in order to study its effect. Since the system that we are considering has ions, the in-
teraction force F; ; among these ions has a Coulombic nature. The presence of free
electrons, that act as a neutralizing background, results in an effective ion-ion in-
teraction potential. Within linear response theories [54} 55] the interaction between
ions is the Yukawa potential:

>
— exp(—rijkp), (43)

where 1/kp is the screening length due to the electrons.

In the following we give a succinct description on how this screening arises and
how it is related to the thermodynamic conditions. Following the Born-Oppenheimer
approximation, the adiabatic separation of motions of heavy and light charged par-
ticles leads to an effective ion-ion interactions, or heavy-heavy particle, with the
electrons, the light particles, forming a cloud around, and instantaneously follow-
ing, the ions. To derive this effective potential between the ions we calculate the
electron density distribution in space when the ions are embedded in their midst.
The potential ¢ (r) that gives rise to the effective interaction can be derived from the
Poisson equation:

2 _e
V¢(r)—;0

ZZiS(r—ri) —ne(r)] , (44)

with the electron density 7, satisfying the following normalization condition:
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4np
2 / 1) i L 5)

The factor 2 in front of the integral accounts for the two spin states of the electron:
up and down. The electron follow the Fermi-Dirac statistics, therefore f(p) is the
electron distribution function in momentum space given by:

1
2 /2me — e ’
exp<7’7 /i:} “‘)—i—l

where L, is the chemical potential of the electron.

The presence of this field, or equivalently the ions, varies the electron density as
Ane(r) = no(U, + e¢(r)) — n. (U, ). Within linear response theory [[54] this change
is: An,(r) = —€? gﬁf ¢ (r). Plugging this into Eq. gives ¢(r) as the Yukawa

2 5n€
&0

f(p) = (46)

. This coefficient can

potential Eq. l| with a screening coefficient kp = —e
be exactly derived in two extreme cases:

e In the limit of non-degenerate electrons ® — oo, i.e., very high T and low den-
sity, the electrons satisfy the Maxwell-Boltzmann statistics which results in the
Debye-Hiickel [56]] screening coefficient:

2

nee
kp = . 47
D eoksT (47)

This corresponds to the classical limit.

e In the fully degenerate limit ® — 0, i.e., very low T and high density, which
corresponds to an electron gas in the ground state [S7], the screening coefficient
is given by:

3 nee?
2 &E F

At finite temperatures and densities we can use interpolation forms, like the one
from Itchimaru [58) 59]

kp =

(48)

4 A@ P14 pe-(b+D)2
He §lnG')—i-ln + © 5O ;
kgT 3T 1+A@?

(49)

with A, B and b coefficients given at [59]]. A more practical interpolation for numer-
ical studies of transport coefficients, which we adopt for the rest of this work, is the
one introduced by Murillo [60]:

2
Ky — (Z)ne (50)

&0 (kBTz) + (%Ep)z
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Note above that we have used Eq. (9) to relate electron density n, with ion density
n and the average charge (Z) of the mixture.

The screening length sets the length scale of the system. The system that in-
teracts through Yukawa potential can be described by the dimensionless screening
coefficient k = awskp [16] and the effective coupling I;rr. When the screening
coefficient k is large the Yukawa potential is a short range potential. In this case
the MD methods make use of the truncation of the interaction potential therefore
limiting the need for the summation of pairwise interactions around a test particle
to a region of finite size. In the case of long range interaction, like weak screen-
ing Yukawa or Coulomb interaction, such truncation of the potential is not allowed
and special techniques, like Ewald [61] summation, have to be used in MD simula-
tions. A more efficient method is to use the so called particle-particle particle-mesh
(PPPM) scheme [[62}163]], where the interparticle force is partitioned into: (i) a short-
range particle-particle force which is to be applied to closely separated ions only,
and (ii) a force component that can be calculated on the mesh. In the mesh part of
the calculation charged clouds are used instead of point-like particles and their inter-
actions is calculated on a computational mesh taking into account periodic images.
This method makes it possible to treat long-range and low-x Yukawa potentials.
For screening values k > 1, the particle-particle part alone provides sufficient ac-
curacy while being numerically more efficient. In these cases the mesh part need
not to be used and the interaction forces are summed for particles situated within a
(x-dependent) cutoff radius around the particle.

The simulations presented here are initiated from a spatially random particle con-
figuration, and particle velocities sampled from a Maxwellian distribution of tem-
perature 7 = 100 eV. This random configuration of the particles of each component
ensures a spatially uniform mixture as well, suitable for the equilibrium MD. At the
initial stage of the run the system is equilibrated to the desired temperature by either
(i) rescaling the particle momenta or (ii) by applying Nosé-Hoover [[64} 165} 52] ther-
mostats to keep the system initially at a constant number of particles N, volume V
and temperature T. On average the system is left to equilibrate for 50000 timesteps
in the NVT ensemble. This is followed by the production run in a microcanonical
ensemble with constant N, volume V and total energy E.

The time scale of the system is set by the ionic plasma frequency :

(Z)*n
g(m)

o, = (51)

The timestep in most of the runs was taken At ~ 1/(100wg), where wg is the Ein-
stein frequency, that physically describes the oscillatory motion of a caged par-
ticle in the well potential created by its neighbors. In the limit of no screening
Kk — 0 we have wg = @, /3 [16]], and for a finite screening we use a fitted form
wg (k) = @, exp(—0.2k'62) [60] to the Ohta and Hamaguchi MD results [16].

To calculate the self-diffusion coefficients of a binary mixed plasma of D and Ar
we have performed MD simulations in the following range of conditions: tempera-
ture T = 100 eV, particle number density n = 10?* /cm? and 10?° /cm?, fully ionized
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deuterium and ionization of Ar Z, =4, 8,13 and 18. The last of Z, will correspond
to a fully ionized Ar. We take the ionization of Ar as a free parameter; for reference,
an average atom model [660] gives the Ar ionization as Z4, ~ 10.5 at T = 100eV,
n=10%/cm? and X in the range 0.01 —0.5. Specifically, for each of the above con-
ditions we consider mixtures whose Ar mole fraction is: X =0.01, 0.05, 0.1, 0.2 and
0.5. The calculations were performed with enough particles (30000 > N > 120000)
over long enough time scales to ensure convergence with insignificant statistical
uncertainty.

The autocorrelation function was calculated on the fly as the simulation pro-
gressed:

Ci(t):—Zv,-(t)-v,-(O), (52)

where i indicates the type of the atom and N; its numbers. For each atom the initial
velocity v(0) is saved. The simulation was run on parallel supercomputers and so
the initial velocity together with other atom attributes has to be communicated when
an atom has to move from a spatial domain related to a processor into another. The
correlation velocity is saved as a table for a sufficiently large time span. Follow-
ing Rudd et al. [1], the self-diffusivity was then calculated as an integral over the
velocity autocorrelation function by postprocessing:

Di= /0 diCi(1) (53)

1,
+ i Ci(tmax)v
a J—

IS ZakAtCi(tk) 1
k

where the coefficients a; give the Simpson’s rule approximation to the integral. The
integral was terminated to account for a power law =% decay in the correlation
function [1]]. In particular the long-time tail contribution was included through this
term. For the conditions that we consider in our simulations the tail contribution was
small (less than 5%).
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5 Results

We have used MD to calculate the velocity autocorrelation functions and self-
diffusivities across a broad range of conditions for a binary ion mixture of deu-
terium and argon in the presence of a polarizable electron background. The ion-ion
interaction is the Yukawa potential (screened Coulomb) Eq. (43), that incorporates
the effect of the electrons in the screening coefficient. The latter is calculated using
Eq. (50) [60]]. In these simulations we have used ionization as an input parameter in
order to see its effects along with temperature, density and composition on diffusiv-

ity.
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Fig. 4: Velocity autocorrelation function using molecular dynamics as a function of time for five
different mole fraction of argon, namely X = 0.01,0.05,0.1,0.2,0.5. In these different mixtures
we consider a constant ionization for deuterium and argon at Zp = 1 and Z4, = 13, respectively.
These mixtures were kept at temperature 7 = 100eV and number density n = 10%° /em?.

Figure [ shows calculation from MD simulations of the velocity autocorrelation
function of deuterium Cp on the left, and of argon Cy4, on the right as a function
of time. Here different lines correspond to results from mixtures with different Ar
mole fraction, namely X =0.01,0.05,0.1,0.2 and 0.5. In these plots the temperature
was kept at T = 100 eV and the ionization of deuterium and argon at Zp = 1 and
Zr = 13, respectively. As we changed the composition we kept the ion density
constant at n = 10?3 /cm® which entails a change of mass density. A change from
a 1% to 50% argon mole fraction, is paralleled with a change in mass density from
p =39.517 to 348.547g/cm’.

For mixtures with higher argon mole fraction, the screening coefficient k as well
as the couplings; I.rr, I4, and Ip, defined in Egs and @), are increased. For
low to moderate coupling values the many-body correlation effects are not very
pronounced. As a consequence the autocorrelation function decreases to 0 mono-
tonically with time. On the other hand the autocorrelation function decays faster to
0 when the coupling value is higher.
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As the coupling is increased—in this case by increasing the amount of Ar—we
notice the formation of structures in the autocorrelation function. This is due to the
so-called “cage-effect” [67,129], where the motion of the tagged particle is correlated
in a temporary cage of its neighbors. This case is clearly seen at the right of Fig. 4]
where the autocorrelation function shows oscillatory characteristics in mixture of
20% and 50% Ar. The autocorrelation functions are well converged.
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Fig. 5: Self-Diffusivity calculation using molecular dynamics for binary mixtures of deuterium
and argon. We have considered mixtures of different Ar mole fraction and different ionization level
at a given temperature 7 = 100eV . Each color will correspond to a given value of Ar ionization.
D is lighter than Ar and as such its self-diffusivity will have higher value. Therefore in each figure
the upper band will correspond to values for D and the lower band to Ar. Each line within these
bands correspond to different ionization of Ar.

The full sets of self-diffusivities are shown in Fig.[5]and Tables[T]and 2} In Fig[5]
we have plotted the calculated self-diffusivities as a function of composition and
as a function of Ar ionization Z4,. The argon mole fraction considered were X =
0.01,0.05,0.1,0.2 and 0.5. The value of argon ionizations were Z4, = 4,8,13 and
fully ionized case Z, = 18. On the left and the right of Fig. [5|system was kept at ion
density 10>} /cm? and 10% /cm?, respectively. In each plot the self-diffusivity of Ar
and D are plotted together. The values fall in band corresponding to each component,
with the upper band corresponding to D. These higher values of D self-diffusion
coefficient are related to the fact that its mass is lighter than Ar. In these bands
each line corresponds to different Ar ionization Z4,. As expected increasing Zy,,
increases the couplings Ip, I's, of each component, as well as I, which reduces
the self-diffusivity of either component. For exactly the same reason if we compare
the values plotted in each graph we see a higher value of self-diffusivity for the less
dense case with ion density n = 10?* /cm? which means lower coupling. In both
graphs it is seen that for composition with trace element Ar, the self-diffusivity of
D is almost unaffected from the ionization of Ar. The variance in self-diffusivity
values is mainly due to the mass of Ar. The general trend is for the self-diffusivities



Diffusivity of Mixtures in Warm Dense Matter Regime 21

to increase with temperature and to decrease with the density, Ar ionization and Ar
mole fraction.

For some compositions we put the above results in Tables [T] and 2] together with
the corresponding couplings -Ip, I'4, as well as I;r¢, dimensionless screening k,
mass density p in g/cm?. Also as an initial estimate of the Maxwell-Stefan diffusion
Eq. (33) we assume that velocity cross-correlation terms are negligible and use the
Darken relation given by: D(l)2 = XDp + (1 = X)Dg,. In Tables |1| and |2| this
value is input at the last column.

Table 1: Self-diffusion and Darken diffusion values estimated from molecular dynamics for bi-
nary mixtures of deuterium and argon. Results correspond to different mixtures at Temperature
100eV and number density 1023 /cm?3. In the second column X denotes Ar molar fraction.

Zar| X Iy, Ip Iorr K |p (g/cm3) Dy, (cm?/s)|Dp (cm?/s) D(l)2 (cm?/s)
0.05{ 1.1379 |0.11289(0.16414|0.60921{0.647444 | 0.32970 | 4.88611 0.55752
4 10.1|1.18537|0.11760(0.22438(0.64763| 0.96278 | 0.23533 3.93434 | 0.60523
0.2 {1.27032{0.12603|0.35488|0.71826| 1.59345 | 0.15457 2.92675 0.70900
0.05(3.81095(0.11909(0.30368|0.65993|0.647444 | 0.10625 3.30412 | 0.26615
8 [0.1]4.11533|0.12860(0.52727(0.74028| 0.96278 | 0.07767 2.36722 | 0.30663
0.2 14.61663(0.14427|1.03874|0.87888| 1.59345 | 0.05368 1.56711 0.35637
0.0519.05838|0.12603|0.57264(0.71826|0.647444 | 0.05858 2.39274 | 0.17529
131 0.1(10.0728{0.14014|1.13341(0.84167| 0.96278 | 0.04348 1.57843 0.19698
0.2 [11.6458]0.16203(2.45879|1.04474| 1.59345 | 0.031786 | 1.02382 | 0.23019
0.05{16.3537|0.13228(0.94335|0.77213|0.647444 | 0.04088 1.87104 | 0.13239
181 0.1 {18.5501{0.15004|1.99006(0.93185| 0.96278 | 0.03194 1.20874 | 0.14962
0.2 121.8295(0.17657|4.50715(1.18681| 1.59345 | 0.02471 0.78650 | 0.17707

At this initial stage it is helpful to compare the Maxwell-Stefan diffusivities
with known models. We do this in Fig. |§| for a case with Z4,, = 13 and ion den-
sity 102 /cm®. Here we compare these results with diffusion from Kinetic Theo-
ries [15, 14} 51] based on binary collisions. In this figure the results from one of
these theories Paquetteetal. [[15]], that assumes a Yukawa potential when calculating
the collision integral, is plotted with solid line. Results from our MD simulations
combine in the form of Darken relation are shown with green.

Daligault has also done an extensive MD study for One Component Plasma
(OCP) [23] as well as for Yukawa One Component Plasma (YOCP) [68], where
he validates the kinetic theories at low coupling and extend it by modeling to mod-
erate coupling. In the strong coupling limit he used an empirical law that describes
the diffusion process as ions hopping from a cage to another formed by its neigh-
bors. He extended this aproach for OCP to binary ionic mixtures (BIM) [23] by use
of the I, ¢y and the mixed plasma frequency as given in Eq. @) We followed the
same scheme to extend the YOCP model to Yukawa mixtures. In Fig. [fresults from
this model are represented with the long-dashed line. Obviously there is discrepancy
between the extension of this model with Darken MD. This is due to the mixed rule
that we used to extend this model.
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Table 2: Self-diffusion and Darken diffusion values estimated from molecular dynamics for bi-
nary mixtures of deuterium and argon. Results correspond to different mixtures at Temperature
100eV and number density 10%° /cm?. In the second column X denotes Ar molar fraction.

Za| X | I, Ip Lyr k |p (gem®)| D4, (cm?/s)|Dp (cm?/s)[ DY, (cm?/s)
0.05]5.28167(0.52400(0.761891(1.04111| 64.7444 | 0.02194 0.15915 0.15228
4 10.1(5.50199|0.54586| 1.04148 |1.07903| 96.278 0.01690 0.13433 0.12258
0.2 15.89628(0.58498| 1.64724 |1.14247| 159.345 | 0.01177 0.10212 0.08405
0.05(17.6888|0.55277| 1.40958 [1.09063| 64.7444 | 0.01058 0.12940 0.12346
8 10.1(19.1017|0.59692| 2.4474 [1.16079| 96.278 0.00804 0.09892 0.08983
0.2 [21.4285]0.66964 | 4.82142 |1.26327| 159.345 | 0.00585 0.06961 0.05685
0.05]42.0453(0.58498| 2.658 |[1.14247| 64.7444 | 0.00678 0.10781 0.10275
131 0.1 |146.7539(0.65049| 5.26084 |1.23768| 96.278 0.00531 0.07889 0.07153
0.2 |154.0551{0.75208| 11.4127 |1.36437| 159.345 | 0.00384 0.05168 0.04211
0.05]75.9072(0.61399| 4.37865 [1.18619| 64.7444 | 0.00538 0.09728 0.09268
181 0.1 (86.1021{0.69645| 9.23702 |1.29768| 96.278 0.00406 0.06630 0.06007
0.2 1101.323{0.81957| 20.9204 |1.43842| 159.345 | 0.00286 0.04241 0.03450
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Fig. 6: Maxwell Stefan (MS) diffusivity as a function of Ar mole fraction at a temperature T =
100eV, ion density 10%3/cm? and Ar ionization Z4, = 13. We compare MS diffusivity from the
Darken linear combination (36), with results from kinetic theories from Paquette and Chapman
& Cowling [15} [14]]. The long-dashed line represents an extension to mixtures of the Daligault
model [68] for YOCP, following his scheme of extending the OCP model to BIM [23]], by use of
the mixing rule in Eq. (7)

In Fig[f] the agreement with the kinetic theory is fairly good at higher Ar mole
fraction, while the discrepancy increases at low Ar mole fraction. This is puzzling,
because we would expect the kinetic theories to work very well in the limit of low
coupling- low Ar fraction-, where the binary collisions are the dominant factor that
drives diffusion. This discrepancy might be due to the fact that we are ignoring the
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cross-correlation terms which might be significant at the low Ar mole fraction. To
assess these effects an intense MD study is needed where the Maxwell-Stefan diffu-
sion can be directly computed and then compared against Darken-like relation. We
have begun these studies. Also there is a lot of effort on extending kinetic theories
to higher coupling [[17] through effective potentials, while still retaining the binary
collision picture.
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6 Discussions

We have reviewed plasma species diffusivity and the various approaches used to
calculate it. Kinetic theories, such as the one due to Chapman and Cowling, pro-
vide analytic formulas for the diffusivity of weakly coupled mixtures. At stronger
coupling the binary collision approximation breaks down and a different technique
is needed. MD provides a means of accounting for the many-body effects associ-
ated with strong coupling. We have reviewed the self-diffusivity and the Maxwell-
Stefan diffusivity. The statistics of the self-diffusivity calculation are much better
than those for the Maxwell-Stefan diffusivity, so we have done some comparisons
of the Darken expression for the interdiffusivity with the calculated Maxwell-Stefan
diffusivity.

Diffusion is one part of mixing. It would be interesting to apply MD to calculate
the hydrodynamic (stirring) part of the mixing as well. MD has been used in molten
metals to study the mixing in a shear layer forming the Kelvin-Helmbholtz instability,
capturing both the vortical flow that sweeps arms of one species into the other and
then mixes by diffusion. [69]. Also, it would be interesting to identify regimes in
which the diffusion does not follow Fick’s law. Non-Fickian diffusion may result
from steep gradients, in which the mole fraction changes significantly within one
mean free path. There is still much to be learned about diffusion.
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Appendix 1: A general derivation of the Green-Kubo relation for
the diffusion of multicomponent mixtures

In the following we generalize the derivation due to Hansen and McDonald [24]]
of the Green-Kubo relation of the interdiffusivity of a binary mixture, Eq. (26), to a
more general multicomponent mixture. Similar treatment of diffusion in multicom-
ponent mixtures was given by Zhou and Miller [46] 49] in the geophysical context,
and by Wheeler and Newman [70] for the electrolytes. The method although cum-
bersome is, in principle, straightforward.

Let cq(r,t) denote the mass fraction of component ¢ at position r and time 7 in
a n-component system. The rate of concentration change is linked to the diffusion
flux Jo(r,1), by the conservation of mass, i.e.,

5 2calr.)

5 +V-Ja(r,t) =0, (54

where p is the mass density of the system. There are (n — 1) independent equations

n
from (54). The relation for the barycentric frame Z Ja(r,t) = 0 completes the
a=1
system of these equations. In the linear response regime we can relate diffusion

fluxes with the gradient of chemical potentials and through it to mass concentration
gradient by the following:

n—1

Ja(r,t) = —=p ) DopVep(r,1), (55)
B=1

where Dgp are the mutual diffusion coefficients, which form a (n—1) x (n—1)
matrix in an n-component system. The following general form of Fick’s law for a
multicomponent mixture [13] is obtained by combining Eq. (54) with Eq. (53))

deg(r,t)
—5 = ﬁ; DopViep(r,t). (56)

By Fourier transforming in space and Laplace transforming in time the above diffu-
sion equation becomes:
k(@) = 2w, (57)

where
9 = —iwl+ kD, (58)

with I the identity matrix. In Eq. (57) |éx(®)) and |c;) are n — 1-dimensional vec-
tors in bra-ket notation, whose aith elements are the Fourier-Laplace transform of
cq/(r,t) and the Fourier transform of ¢4 (r,0), respectively with:

ea,k(w):/:dz/d3rca(r,r)exp(—ik-r+ or), (59)
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and
caﬁk:/d3rca(r70)exp(—ik-r). (60)

From Eq. (57) we can construct an (n — 1) x (n — 1) matrix equation relating differ-
ent correlation concentration factors:

9 ' =o€, (61)

where the elements of matrices & and % consist of time-dependent and static
concentration-correlation functions, respectively, given by:

Oup = (Car(®)cp, 1) (62)

and
%aﬁ = <Ca,kcﬁ,—k>a (63)

where (---) represents statistical ensemble average. Relation (61)) can explicitly be
written as: X
|@ ‘ Ba 1 'E
= Oay|C |yp. (64)
|2] |<5‘ Z Y@l

where the elements of the inverse of matrix 2 are written as (2 '|go, = |Z|ap /| 2|,
with [Z]4p the cofactor of Z,p in the determinant |Z| [38], and similarly for the
concentration correlation matrix €.

Taking the inverse Laplace transform of Eq. (64) gives:

@ n—1
|gi|a_ 5 = |<g|/ = <Z<ca7k(t)c%k>|<g|ﬁy> exp(iot)dr.  (65)

—i0

In the long wavelength limit the LHS of Eq. (63) is:

. . ‘@|[5a Daﬁkz

from which the following expression D is obtained:

n—1
Dyp = C}gn)m{lﬁo k2|C€|/ = (Z (ca(t)cy, k>|%|ﬁ7) exp(iot)dt.  (67)

Equation is a generalization of a multicomponent mixture to the one derived
by Hansen and McDonald [24]. In the above relation it is essential taking the limit

of k — 0 before w — 0. By use of the mass conservation relation in Fourier space

dc . . . .
L‘gtk 0 _ —ik - Jok(t), in the above equation we can replace the time dependent

concentration structure factor by the corresponding diffusion flux correlation func-
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tions. After an integration by parts and use of the time-translational invariance prop-
erty (J1x(t)c1,—k) = (Jixc1,—k(—1)), we have:

1 n—1 Cg oo
Dgp = lim lim<z ||<;ﬁ|y /0 <Ja,k(l)'Jy,k>exp(iwt)dt> (68)

0—0k—03p y=1

from which we get:

B 1 n—1 |<50|By oo
Daﬁ—zp@ et " ko ). @

Here the elements of matrix €y are given by |%p|qp = (c*cP) . This are the long
wavelength limit concentration correlation functions. In binary mixtures they are
directly related to the concentration structure factor S¢. defined by Eq. (27). Equa-
tion @]) is written as a product of two matrices, one whose elements are related to
composition-composition structure factor, and the other with elements constructed
from Green-Kubo (Maxwell-Stefan) interdiffusion correlation terms. It is straight-
forward to derive the two component interdiffusion coefficient as a special case
of this multicomponent relation (69). In a ternary mixture matrix relation sim-
plifies to:

[Dll D12:| 1 [((02)2> —<6102>} o {fom<J1(f)'J1>df Jo (Ju(t)-J2)dt

Dy Dy~ 3p|Co| |—(c1c2) ((c1)?) Jo (Ja(t)-Ju)de [ (Ja(t) - Jo)dt ]
(70)
Here
[Col = ((c1)*){(c2)®) = ({c1c2))? (71)

is the determinant of matrix Cy. In analogy with the binary mixing case we can
define a thermodynamic factor matrix & such that:

Py Pp| 1 ((€2)?) —(cic2)
[@zl @iz] = 3l L<0102> <<c1>2>]' 72

The Green-Kubo form presented in Eq. provides a simple form that can be
used to study ternary mixtures through equilibrium MD.
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Appendix 2: Collision Integrals
The collision integrals Q(%) between two particles o and 3 are related to the total

cross section after integrating over a Maxwellian velocity distribution. They are
given by [14}115]:

ii kgT 1/2 < i i
agg( . ) | e e e ol s, (73)

27Myeq

where g is a dimensionless velocity, m,.g = mgmg /(meq +mg) is the reduced mass,

and ¢ é: [)3 are the collisions cross section for a given energy:

94 = 27:/ (1—cos' xqp)bdb, (74)
0

with the integration over the impact parameter b.
In Eq. Xap is the scattering angle given:

- bd

Xap =72 : ’”V a (75)
ap ;2|1 b2 _ Yapl”
bor {1 r2 g2kpT

Here V5(r) is the interaction potential between the particle of type o and f3, and
ﬂ%" is the distance of the closest approach between the particle which is the root of
the following equation:

Vogp (i
- (r'l:;>2 . a;igof ) =0 (76)
o
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